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This paper considers the transverse vibrations of #uid-"lled double-bellows expansion joints.
The bellows are modelled as a Timoshenko beam, and the #uid added mass includes rotary
inertia and bellows convolution distortion e!ects. The natural frequencies are given in terms of
a Rayleigh quotient, and both lateral and rocking modes of the pipe connecting the bellows
units are considered. The theoretical predictions for the "rst six modes are compared with
experiments in still air and water and the agreement is found to be very good. The #ow-induced
vibrations of the double bellows are then studied with the bellows downstream of a straight
section of pipe and a 903 elbow. Strouhal numbers are computed for each of the #ow-excited
mode resonances. The bellows natural frequencies are not a!ected by the #owing #uid but the
presence of an immediate upstream elbow substantially reduces the #ow velocity required to
excite resonance. ( 1999 Academic Press
1. INTRODUCTION

BELLOWS EXPANSION JOINTS are corrugated pipes which have been used to absorb axial,
transverse and rotational movement in piping systems for more than 100 years. In recent
years, this technology is replacing expansion loops in power plant piping because it is much
more compact and reduces head loss. It has also found signi"cant applications in the
aerospace industry. In cases where the pipe lateral movement is large, double bellows, as
shown in Figure 1(a), may be used. Since these joints are quite #exible, lateral supports may
be utilized to prevent buckling, [Figure 1(b)].

The #exibility of bellows makes them susceptible to #ow-induced vibration. Above some
critical velocity, the bellows develop large-amplitude oscillations at one of the bellows
natural frequencies, and fatigue failures occur in a relatively short time. In order to predict
the limiting #ow velocity for a bellows, it is necessary to have an accurate estimate of the
bellows natural frequencies.

The early studies on bellows vibrations concentrated on axial vibrations and provided
relatively simple formulae for frequency predictions (Gerlach 1969; EJMA 1980). Weaver
& Ainsworth (1989) conducted an experimental study of a double bellows which had
experienced service failure, and suggested that the self-excitation of bellows was associated
with shear layer instability across the cavities of the individual bellows convolutions and
occurred for a constant Strouhal number of 0)45. This was con"rmed using data from other
bellows (Weaver 1989) and by a scaled-up, two-dimensional laboratory model (Gidi
& Weaver 1995). A more recent study by Jakubauskas & Weaver (1996) found that the
bellows axial sti!ness predictions of Gerlach (1969) and EJMA (1980) could be in error, as
0889}9746/99/040461#19 $30.00 ( 1999 Academic Press



Figure 1. (a) Double bellows; (b) double bellows with lateral supports.
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could be the #uid added mass predictions, although the latter could compensate for the
former error in certain cases of bellows containing liquids.

Li et al. (1986) studied transverse vibrations of a single bellows using a simple
Bernoulli}Euler beam solution, as does the EJMA Standard (1980). Morishita et al. (1989)
used a Timoshenko beam model and claimed that, while shear can be ignored, the e!ect of
rotary inertia of bellows was signi"cant. This was veri"ed in the studies of Jakubauskas
& Weaver (1998a, b), who also showed that convolution shape distortion produces a com-
ponent of added mass which is dominant in vibration modes higher than the "rst, especially
for shorter bellows. For the single bellows studied, these authors demonstrated that the
neglect of rotary inertia and convolution distortion in the EJMA Standard produced
signi"cant over-predictions of even the "rst mode of transverse vibration. No similar study
appears in the technical literature for double bellows.

This paper presents an analysis of the transverse vibration of double-bellows expansion
joints. The analysis models a bellows as a Timoshenko beam containing a #owing #uid and
neglecting the e!ect of transverse shear. The results are presented in the form of a Rayleigh
quotient to facilitate hand calculation. The natural frequency predictions are veri"ed in air
and quiescent #uid. Flow-induced vibration experiments in a water tunnel are also present-
ed for cases when the bellows have a straight pipe and an elbow directly upstream of the
bellows.

2. THEORETICAL ANALYSIS

The theoretical analysis follows directly the approach taken by Jakubauskas & Weaver
(1998a,b), and the only details important to the present study will be presented here. The
second of these papers (1998b) showed that the bellows could be modelled as a Timoshenko
beam neglecting shear. Furthermore, it was shown that the Coriolis and curvature e!ects of
the #owing #uid could be ignored for the #ow velocities used in practical applications of
bellows. Thus, the equation of motion for transverse vibration of bellows with #owing #uid
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is given by
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where EI
eq

is the bellows equivalent bending sti!ness per unit length, m
tot

is the total mass of
the bellows per unit length including #uid added mass, oI is the e!ective mass moment of
inertia (rotary inertia of the bellows and contained #uid), P is the internal pressure, R

m
is the

mean radius of the bellows (see Figure 2), w is the lateral bellows displacement, and x is the
axial coordinate. Jakubauskas & Weaver (1998b) developed analytical expressions for each
of the parameters in equation (1) in terms of the bellows geometry and material properties.
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Figure 2. Bellows geometry.
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It should be noted that the relatively simple expressions for axial sti!ness given by Gerlach
(1969) and EJMA (1980) may be somewhat in error (Jakubauskas and Weaver 1996). For
this reason, Gerlach recommended using measured axial sti!ness for improved frequency
predictions. For calculations in the present paper, the authors have used the axial sti!ness
computed from their "nite-element shell model which has been demonstrated to provide
excellent results (Jakubauskas and Weaver 1996).

The rotary inertia of the bellows is given by
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where h is the convolution height, t is the convolution material thickness, and o
b
and o

f
are

the densities of the bellows material and #uid, respectively. The "rst term in equation (3) is
the rotary inertia of the bellows, while the second term is that of the #uid trapped between
the convolutions.

The total mass per unit length of the bellows, m
tot

, is comprised of three components: that
due to the bellows itself, that due to the rigid-body motion of the #uid contained in the
bellows, and that due to the shape distortion of the bellows convolutions (#uid added mass
due to radial acceleration of the #uid squeezed in and out of the convolutions during
vibration); i.e.,
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where k is the #uid added mass coe$cient and a
f2k

is the coe$cient
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In equation (5), l is the bellows length and A
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The primes in equation (6) represent di!erentiation with respect to the normalized axial
coordinate n, i.e. x/l"m.

The #uid added mass coe$cient, k, was found by Jakubauskas & Weaver (1998a) using
a "nite-element model of the #uid contained by the bellows during vibration, and the results
for typical bellows geometries are plotted in Figure A1. Thus, knowing the bellows and #uid
densities, the bellows geometry as shown in Figure 2, and the #uid added mass coe$cient
from Figure A1, all the parameters in the equation of motion, equation (1), can be
determined. It remains to solve this equation subject to the appropriate boundary condi-
tions.

2.1. BOUNDARY CONDITIONS

Double bellows generally consist of two identical single bellows units at either end of a rela-
tively rigid connecting pipe, as shown in Figure 1(a). Since double bellows are symmetric
about their centreline, it is only necessary to consider half the double bellows for lateral
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vibration analysis, as shown in Figure 3. The bellows unit has a total length of l and the half-
length of the connecting pipe is a. Figure 3(a) shows the "rst lateral mode of vibration, in
which the motion of the connecting pipe is pure translation. This is true of all lateral modes,
the second and third of which are shown in Figure 3(b, c). Figure 4(a) shows the "rst rocking
mode, in which the connecting pipe rotates about its centre. This is true for all rocking
modes, the second and third of which are shown in Figure 4(b, c). These two mode types are
treated separately, because of the di!erent boundary conditions created by these distinct
motions. For generality, a lateral support sti!ness, k

4
, and the support e!ective mass, M

4
,

have been placed at the right end of the bellows, as shown in Figures 3(a) and 4(a).
The left-hand side of the bellows in Figures 3 and 4 is "xed through a #ange to a pipe

which is rigid compared to the bellows. Therefore, the lateral displacement and rotation at
this #ange are zero:
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2.1.1. ¸ateral modes (pure translation of connecting pipe)

For lateral modes, the rotation of the right end of the bellows is also zero, i.e.
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The fourth boundary condition arises from the requirement that the shear force at the right
end of the bellows is equal to the combined inertia force of lateral support mass, M
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where m
p

and m
f

are the mass per unit length of the connecting pipe and contained #uid,
respectively.

2.1.2. Rocking modes (pure rotation of connecting pipe about its centre)

The geometric boundary condition at the right end of the bellows during rocking modes
arises from the fact that the slope is known from the simple rotation angle, h, of the
connecting pipe about its centreline,
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The fourth boundary condition is rather more complex but again is derived from the shear
force at the right end of the bellows. The equation of motion of the half connecting pipe
about its pivot is given by
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where J
p
is the moment of inertia of the half connecting pipe including contained #uid and

support mass about the pivot, and M(l, t) and Q(l, t) are the moment and shear force,
respectively, produced by the bellows acting on the end of the connecting pipe. The "nal



Figure 3. Double bellows section. (a) First lateral mode; (b) second lateral mode; (c) third lateral mode.
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term on the right-hand side of equation (11) is the moment created by the lateral support
sti!ness, k

4
. Considering now the equilibrium of an element of the bellows with internal

pressure, P, the shear force, Q, is given by
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Figure 4. Double bellows section. (a) First rocking mode; (b) second rocking mode; (c) third rocking mode.
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where the third term on the right-hand side represents the rotary inertia of the bellows and
contained #uid, and shear e!ects in the Timoshenko beam theory have been neglected as
discussed in the foregoing. This expression was used to derive the general equation of
motion, equation (1), [see, for example, PamKdoussis & Li (1993), Blevins (1990), and
Timoshenko et al. (1974)].

Using the moment curvature relationship for the bellows,

M"EI
eq

L2w
Lx2

, (13)
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and the geometric relationship for the half connecting pipe,

L2h
Lt2

"

1

a

L2w
Lt2

(14)

with equations (11) and (12) at the bellows boundary, x"l, provides the "nal boundary
condition:
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The moment of inertia of the connecting pipe about the pivot including support mass, M
s
,

and contained #uid is given by
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where R is the mean radius of the connecting pipe. In equation (16), the half pipe has been
modelled as a thin-walled circular cylinder of radius R and length a, and the #uid has been
modelled as a solid cylinder of the same dimensions. For moments of inertia of such
sections, see for example Blevins (1979).

3. SOLUTION OF EQUATION OF MOTION

The solution procedure follows that outlined in Jakubauskas & Weaver (1998b). Assuming
a solution in the form

w(x, t)"X(x)sinut (17)

and substituting into the equation of motion, equation (1), yields an ordinary di!erential
equation in the axial coordinate, x. Then following the Rayleigh quotient approach, this
equation is multiplied by the mode shape function of the kth mode, X

k
, which satis"es all of

the appropriate boundary conditions for the case considered. After integrating by parts, the
frequency equation for the kth natural frequency becomes
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and A
lk

was de"ned in equation (6). It should be noted that the mode shape functions in
equation (20) have been written in terms of the dimensionless coordinate, m"x/l, i.e. X(m).
When the mode shape functions satisfying the appropriate boundary conditions are known,
the constants A

ik
can be determined once and for all.



TABLE 1

A
ik

constants for lateral modes

No lateral Supports Lateral supports
Mode no.

A
ik

1 2 3 1

A
1k

5)650 Figure A2 Figure A3 5)62
A

2k
0)10 0)0249 0)0119 0)0998

A
3k

0 0 0 0)0826
A

4k
3)193 Figure A2 Figure A3 3)152

A
5k

2)656 Figure A2 Figure A3 2)611

TABLE 2

A
ik

Constants for rocking modes

No Lateral Supports Lateral Supports
Mode no.

A
ik

1 2 3 1

A
1k

Figure A4 Figure A5 Figure A6 Figure A7
A

2k
Figure A4 Figure A5 Figure A6 Figure A7

A
3k

0 0 0 Figure A7
A

4k
3)08 Figure A5 Figure A6 3)073

A
5k

Figure A4 Figure A5 Figure A6 Figure A7
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The constants A
ik

were computed using the mode shapes derived from the Bernoulli}
Euler equation. In some cases, it was found that these constants were essentially indepen-
dent of the length of the connecting pipe, 2a. In other cases, the constants were found to
depend on a and were plotted as functions of a/l, as shown in Figures A2}A7, for the "rst
three natural frequencies of both lateral and rocking modes. The results are summarized in
Tables 1 and 2 for lateral and rocking modes, respectively. Also provided in these tables are
the constants for the "rst modes of double bellows with lateral supports.

The above analysis was developed so that the natural frequencies of double bellows could
be computed using hand calculations. To check the accuracy of the approximate Rayleigh
quotient approach, the solutions for the "rst mode of vibration were obtained from an exact
solution of the di!erential equation of motion and appropriate boundary conditions. For
both the "rst lateral and rocking modes, the Rayleigh quotient approach was less than 1%
o! the exact solution. This is not unexpected as it is well known that a good approximation
for the assumed mode functions in the Rayleigh quotient produces an even better approxi-
mation of the natural frequencies, and the assumed mode shapes used to compute the
constants of equation (20) are expected to be very good (eigenfunctions of the Be-
rnoulli}Euler equation satisfying the correct boundary conditions).

4. EXPERIMENTAL VERIFICATION

A special rig was designed to determine the natural frequencies of the bellows with static air
and water inside. The "xture was capable of being pressurized and was made su$ciently
rigid so that its lowest natural frequency was an order of magnitude above the bellows
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natural frequencies of interest. Vibrations were monitored using strain gauges carefully
placed on the bellows convolutions, such that axial and bending modes could be separated.
Details of the test "xture and strain gauge arrangement are given in Jakubauskas & Weaver
(1998b).

The natural frequencies were obtained by shock excitation of the bellows and analysing
the strain gauge signals with a Fourier Analyzer in its transient capture mode. The
bellows used in the experiments were made from stainless steel with the following para-
meters: R

.
"0)0844 m, h"0)0158 m, R

1
"0)00308 m, R

2
"0)00268 m, l"0)1517 m,

t"0)0006 m, a"0)1502 m, p"0)01152 m, p
b
"7860 kg/m, E"2)07]1011Pa, k"

3)7]106 N/m, and l"0)3.
The experimental results are summarized in Table 3 and compared with theoretical

predictions for internal air at P"0 and 200 kPa and water at P"0. It is seen that the
predictions for the natural frequencies in air with zero internal gauge pressure are quite
good, with a maximum error for the "rst six modes (three lateral and three rocking) of less
than 4%. The agreement with internal air pressurized to 200 kPa is nearly as good, with
a maximum error of less than 5%. It is important to note that the e!ect of internal pressure
is to lower the natural frequencies. This e!ect is greatest for the "rst lateral mode (about
8%) and essentially disappears by the third lateral or rocking mode. The predictions for
natural frequencies in water with zero gauge pressure are also in reasonable agreement with
experiments, with the errors being less than 5% except for the third lateral mode (7)5%).
Interestingly, the predictions for the rocking modes are generally better than those for the
lateral modes for the bellows used in these tests. The authors have no explanation for this
and cannot judge whether this would be expected for other double bellows. However, it is
considered that the agreement of the predictions with experiments is good for all the modes
studied. Experiments were also conducted for internal water pressurized to 200 kPa
(Jakubauskas 1995). The e!ect of internal pressure on natural frequency was less for water
than for air and the agreement of theory with experiment was similar to that shown in
Table 3, so the detailed results are not presented here.

Calculations were also conducted for the "rst lateral and rocking mode frequencies of
these bellows in air and water at zero gauge pressure using Bernoulli-Euler beam theory
and the formulae of EJMA (1980), as shown in Table 4. The results show that the neglect of
rotary inertia by Bernoulli}Euler theory leads to an error of the order of 20% for the "rst
lateral and rocking modes in air. This e!ect is expected to increase with higher mode
numbers. Interestingly, the e!ect of rotary inertia seems to be less signi"cant for natural
frequency predictions for double bellows in water, presumably because added mass e!ects
are dominant. Similar results were observed for single bellows, although in that case the
TABLE 3

Summary of experimental results (Exp) and comparison with theoretical predictions (Theo)

Air (P"0) Air (P"200 kPa) Water (P"0)

Mode Exp(Hz) Theo(Hz) %Error Exp(Hz) Theo(Hz) %Error Exp(Hz) Theo(Hz) %Error

Lat
1

78)8 81)2 3)0 72)5 75)5 4)1 35)0 36)0 2)9
Roc

1
119 121 1)7 111 116 4)5 61)0 62)3 2)1

Lat
2

284 294 3)5 278 289 4)0 186 194 4)3
Roc

2
305 311 2)0 296 306 3)4 206 208 1)0

Lat
3

458 475 3)7 456 471 3)3 319 343 7)5
Roc

3
482 488 1)2 480 484 0)8 338 352 4)1



TABLE 4

Comparison of present theory with Bernoulli}Euler and EJMA (1980)

Mode Air (P"0) Water (P"0)

Experiment Bernoulli-Euler EJMA Experiment Bernoulli-Euler EJMA

Lat
1

78)8 91)8 91)8 35 37)2 51)0
Roc

1
119 143 158 61 66)0 89)1
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di!erences were much greater (Jakubauskas and Weaver 1998b). Table 4 also shows that the
predictions of EJMA are generally rather poor, with frequency estimates ranging from 17 to
46% high. This is apparently due to the neglect of rotary inertia and errors in estimating the
axial sti!ness and #uid added mass of the bellows.

5. FLOW-INDUCED VIBRATION EXPERIMENTS

Since the motivation for this work was to obtain the natural frequencies of bellows for deter-
mining the limiting velocities for #ow-induced vibration, the bellows used in the above tests
were placed in a water tunnel for experiments with internal #ow. The double bellows were
placed in a straight section of pipe for uniform #ow and then placed immediately down-
stream of a standard 903 elbow to determine the e!ect of nonuniform #ow. Details of the
water tunnel and test procedure are given in Jakubauskas & Weaver (1998b) for the case of
a single-bellows unit.

The test results are plotted as vibration r.m.s. amplitude response against mean #ow
velocity in Figures 5 and 6 for the cases of a straight pipe upstream and an elbow upstream
of the bellows, respectively. The amplitude response is shown on an arbitrary scale since it is
the output of strain gauges on one of the bellows convolutions. Thus, bending strain is being
measured and, since the bending of that convolution depends on the mode, this strain
cannot be interpreted directly as a vibration amplitude.

The response curves of Figures 5 and 6 are qualitatively similar to those reported by
Weaver & Ainsworth (1989) and Jakubauskas & Weaver (1998b) for a relatively small
double and a single bellows, respectively. No signi"cant response is observed until the #ow
velocity reaches some critical value, then a succession of vibration modes are excited as the
#ow velocity is increased further. The vibration amplitudes of the bellows convolutions
were su$ciently large that they could be seen visually and were accompanied by an audible
humming sound. The "rst mode observed was the second axial mode at 136 Hz, in which
the connecting pipe is stationary with the bellows at each end oscillating out-of-phase with
one another. This was also the "rst mode observed in the experiments of Weaver &
Ainsworth (1989) with a much smaller double bellows. Apparently, the damping in the "rst
axial mode (53 Hz) is su$ciently high to overcome the excitation energy available at the
critical velocity for that mode. It seems that this is also true for the lowest lateral and
rocking modes which would be expected at 35 and 61 Hz, respectively. The initial lateral
and rocking modes to be excited were the second modes at 186 and 206 Hz, respectively.
Note that the second lateral mode was only observed when the bellows was placed
downstream of the elbow. The next peak observed at 264 Hz is the fourth axial mode, there
being no evidence of the third axial mode at 167 Hz. Finally, the third lateral and rocking
modes were observed. The experiment was stopped at a #ow velocity of about 9 m/s.

Several important observations can be made from Figures 5 and 6. Firstly, as noted
above, the "rst mode to be excited is not necessarily the lowest natural frequency. At present



Figure 5. Bellows response with straight pipe upstream.

Figure 6. Bellows response with elbow upstream.
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TABLE 5

Summary of Strouhal numbers

Mode 2nd Axial Lat
2

Roc
2

4th axial Lat
3

Roc
3

Frequency (Hz) 136 186 206 264 319 338

Strouhal Numbers
Away from elbow 0)46 } 0)46 0)44 0)47 0)46
At elbow 0)56 0)63 0)54 0)60 0)61 0)53
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there exists no method to account for the e!ect of damping on critical mode excitation. It
should be noted that the lowest natural frequency ("rst axial mode) was critical with the
single bellows studied by Jakubauskas & Weaver (1998b). Secondly, the frequencies excited
by the #ow are identical to those observed in quiescent #uid which means that the #ow has
no obvious e!ect on the bellows natural frequencies. Finally, the e!ect of an upstream elbow
is to signi"cantly reduce the mean #ow velocity at which #ow excitation occurs. This means
that a high velocity #ow over only a portion of the circumference of the bellows convolu-
tions is su$cient to cause large-amplitude #ow-induced vibration.

The Strouhal number, St, for bellows is based on mean #ow velocity, <, measured at the
peak response amplitude, the frequency of vibration, f, and the convolution pitch, p, as the
length scale:

St"
fp

<
. (21)

Strouhal numbers for the response peaks in Figures 5 and 6 were computed and are
summarized in Table 5. The average Strouhal number for the response peaks of the bellows
away from an upstream elbow is 0)46 with a standard deviation of 0)01. This agrees well
with the value of 0)45 reported by Weaver & Ainsworth (1998b) for a small double bellows
and by Jakubauskas & Weaver (1998b) for a single bellows. The Strouhal number for the
bellows just downstream of the 903 elbow has an average value of 0)58 with a standard
deviation of 0)04. This means that placing the bellows near an elbow has reduced the
limiting velocity for #ow excitation by more than 20%.

6. CONCLUSIONS

A theoretical model has been developed for computing the natural frequencies of transverse
vibrations of double bellows expansion joints. The theory is based on Timoshenko beam
theory, neglecting the e!ects of shear but including #uid added mass and rotary inertia. The
model treats lateral and rocking modes separately and is presented in the form of a Rayleigh
quotient. The model predictions are compared with experimental results in air and both
quiescent and #owing water. Comparison is also made with the predictions of
Bernoulli}Euler beam theory and the EJMA Standard (1980). The conclusions are as
follows.

1. The agreement between the present theory and experiment is reasonable, with errors
in the "rst three lateral and rocking modes in both air and water generally being less than
5%.

2. The e!ect of internal pressurization is to reduce the natural frequencies but, practically
speaking, this e!ect is not large and diminishes with increasing mode number.



474 V. JAKUBAUSKAS AND D. S. WEAVER
3. The e!ect of rotary inertia, which is neglected in both the Bernoulli}Euler and EJMA
approaches, is signi"cant, especially for vibrations in air.

4. The EJMA predictions signi"cantly overestimate the transverse natural frequencies of
the bellows tested, because rotary inertia is neglected and the simple estimates for sti!ness
and added mass are not su$ciently accurate, at least for the bellows tested in this study.

5. Internal #ow has a negligible e!ect in the natural frequencies of bellows.
6. The mean #ow velocity at the #ow-induced vibration response peaks of double

bellows can be reasonably estimated using the convolution pitch as the length scale with
a Strouhal number of 0)45. This is the same value as found for axial vibrations of single
bellows.

7. The e!ect of an elbow directly upstream of a bellows is to signi"cantly reduce the mean
#ow velocity required to produce large amplitude #ow induced vibrations.
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APPENDIX 1: ADDED MASS AND MODE COEFFICIENTS

In this appendix typical plots of added mass coe$cients and mode coe$cients are presented for
a typical range of bellows parameters.



Figure A1. Fluid added mass coe$cient, from Jakubauskas & Weaver (1998a).

Figure A2. Coe$cients for second lateral mode, no lateral support.
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Figure A3. Coe$cients for third lateral mode, no lateral support.

Figure A4. Coe$cients for "rst rocking mode, no lateral support.
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Figure A5. Coe$cients for second rocking mode, no lateral support.

Figure A6. Coe$cients for third rocking mode, no lateral support.
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Figure A7. Coe$cients for "rst rocking mode with lateral support.
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APPENDIX 2: NOMENCLATURE

A
ik

ith constant for mode k
a half-length of connecting pipe
B constant
E modulus of elasticity
EI

eq
equivalent bending sti!ness of bellows

f frequency at resonance peak
f
k

frequency in kth mode (Hz)
h total convolution height
J
p

mass moment of inertia of half-connecting pipe about pivot
k axial sti!ness of bellows per half-convolution
k
s

lateral support sti!ness
l live length of bellows
M bending moment
M

s
lateral support e!ective mass

m
tot

total bellows mass per unit length (including #uid added mass)
m

b
bellows mass per unit length

m
p

connecting pipe mass per unit length
p convolution pitch
P #uid pressure
Q shear force
R mean radius of connecting pipe
R

1
convolution root radius

R
2

convolution crown radius
R

m
mean radius of bellows

St Strouhal number
t bellows convolution thickness and time
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< mean #ow velocity through bellows
w transverse displacement
X

k
bellows mode shape in kth mode

x axial coordinate
a
f2k

integral function for bellows distortion #uid added mass in kth mode
h rotation angle of connecting pipe about pivot
k added mass coe$cient
o density
o
b

density of bellows material
o
f

#uid density
oI e!ective mass moment of inertia (rotary inertia) of bellows and contained #uid
u frequency (rad/s)

Subscript

k kth mode
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